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FROM LIQUID CRYSTAL POLYMERS CONTAINING CROWN ETHERS TO 
TAPERED BUILDING BLOCKS CONTAINING CROWN ETHERS WHICH 
SELF-ASSEMBLE INTO TUBULAR SUPERMOLECULES 

V. Percec* and G. Johansson 

The W. M. Keck Laboratories for Organic Synthesis, Department of 
Macromolecular Science, Case Western Reserve University, Cleveland, OH 44106 

INTRODUCTION 
Molecular recognition directed self-assembly of supramolecular architectures or noncovalent 

synthesis (1), and molecular recognition directed self-assembly of transition states or self- 

synthesis (2), are two of the most active topics of research in the area of supramolecular 

chemistry (3). We are concerned with the use of the simplest endo-receptor i.e., crown ether 

in the design of two classes of systems. The first one is a system which is externally regulated 

by molecular recognition processes via a crown ether endo-receptor. This system is based on 

various classes of liquid-crystalline polymers which exhibit phase transitions that are 

manipulated by the reversible complexation of the crown ether present in different parts of then- 

repeat unit with metal salts. The information gained from these experiments is then exploited in 

the design of the second group of systems. This consists of self-assembling building blocks 

containing various combinations of crown ether as endo-receptor and a tapered group as exo- 

receptor. Upon complexation with metal salts, these building blocks self-assemble into tubular 
supramolecular architectures. Therefore, while the first system exhibits molecular recognition 

directed phase transitions, the second one self-assembles into tubular supramolecular 

architectures via various molecular recognition processes. These tubular supramolecular 
architectures display a thermotropic hexagonal columnar (Oh) liquid crystalline phase, which 

enables the structure of the self-assembled supramolecular architecture to be determined by X- 

ray diffraction experiments. Since the formation of a liquid-crystalline phase is a 

thermodynamically controlled process, its characterization eliminates many of the difficulties 

encountered in the characterization of self-assembled crystalline structures which are obtained 

by a kinetically controlled process. The goal of this paper is to discuss selected examples from 

these two groups of systems elaborated in our laboratory. 

LIQUID CRYSTALLINE POLYMERS CONTAINING CROWN ETHERS: 
SYNTHESIS AND MANIPULATION OF PHASE TRANSITIONS BY 
COMPLEXATION 

Scheme 1 outlines the two major classes of liquid-crystalline polymers, i.e., main-chain and 

side-chain, and their architecture which is determined by the place of the repeat unit in which 

the crown ether endo-receptor is inserted. We have designed main-chain liquid-crystalline 

polymers containing crown ethers in their flexible spacer (4), and side-chain liquid-crystalline 

polymers containing crown ethers either in their backbone (5) or in their mesogenic side groups 

(6,7). 



I. Main-Chain Liquid-Crystalline Polymers 

II. Side-Chain Liquid-Crystalline Polymers 

A. Crown ether ligand as part of the mesogenic unit 

crown ether ligand 

mesogenic unit 

interconnecting unit 

B. Crown ether ligand as part of the polymer backbone 

Scheme 1. Various architectures of main-chain and side-chain liquid-crystalline 
polymers containing crown ethers 

Scheme 2 outlines the synthetic procedure used in the preparation of the two monomers: 4-{2- 
[4'-(ll-vinyloxyundecyloxy)biphenyl-4-yl]ethyl}benzo-15-crown-5 (VE-BPE) and 4-{2-[4'- 

(1 l-methacryloyloxyundecyloxy)biphenyl-4-yl]ethyl}benzo-15-crown-5 (MA-BPE) (7b). 

The synthetic details of this reaction scheme are available in the original publication (7b). VE- 
BPE was polymerized by a cationic mechanism employing an initiating system based on 

CF3S03H/(CH3)2S in methylene dichloride at 0°C. Under these conditions a "living" 

polymerization is achieved for this functional monomer. The selection of this cationic initiator 

was based on the use of the soft nucleophile/base, (Ct^S, which reacts selectively with the 

growing carbenium species in a reversible way and therefore, avoids the reaction between the 

propagating carbenium ions and other nucleophilic functional groups of the monomer which 

exhibit a harder nucleophilic/basic character. Details of this polymerization and additional 

demonstrations of the ability of this initiator to generate living cationic polymerizations for a 

large variety of functional mesogenic vinyl ethers were reviewed elsewhere (8). 
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Scheme 2. Synthesis of VE-BPE and MA-BPE. 

Figure la illustrates the cationic polymerization of VE-BPE and the structure of the resulted 
polymer (PVE-BPE). PVE-BPE with DP = 19 exhibits a crystalline melting followed by an 

enantiotropic smectic A (SA) mesophase. Figure lb presents the influence of complexation of 

PVE-BPE (DP = 19) with NaS03CF3 on the phase behavior of the resulting complex. With 

the increase of the amount of NaS03CF3 complexed by the 15-crown-5 moiety of this 

polymer, both the glass transition and the SA-isotropic transition temperatures increase. At the 

same time the crystalline melting decreases. At higher concentrations of salt, a second smectic 

mesophase is uncovered. 
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Figure 1: (a) Cationic polymerization of VE-BPE and the complexes of PVE-BPE with 
NaS03CF3. (b) The dependence of various transition temperatures of the 
complexes of PVE-BPE (DP=19) with NaSOßCFs on the mole ratio 
NaS03CF3/PVE-BPE (i=isotropic; S and SA=smectic and smectic A; 
k=crystalline). 

The S-S A transition temperature decreases with the increase of the amount of complexed salt. 

Figure 2a outlines the radical polymerization of MA-BPE. The resulting polymer PMA-BPE 

also exhibits a crystalline and a SA phase. The effect of complexation of PMA-BPE with 

NaS03CF3 on its phase transitions is presented in Figure 2b. The trend obtained from this 

figure is quite similar to that observed from Figure la. 
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Figure 2: (a) Radical polymerization of MA-BPE and the complexes of PMA-BPE with 
NaS03CF3. (b) The dependence of various transition temperatures of the 
complexes of PMA-BPE with NaS03CF3 on the mole ratio, NaS03CF3 / 
PMA-BPE (i=isotropic, S and SA=smectic and smectic A, k=crystalline). 

The general message provided by these experiments is that complexation of the crown ether 

moiety of a side-chain liquid-crystalline polymer with metal salts enhances the stability of the 

lowest-order liquid-crystalline phase and decreases both the tendency towards crystallization as 

well as the tendency towards formation of higher-ordered liquid-crystalline phases. As a 

consequence, this molecular recognition effect can be expected to transform a crystalline 

polymer into a polymer displaying a monotropic or even an enantiotropic liquid-crystalline 

phase.   For example, Figure 3a presents the heating and cooling differential scanning 
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calorimetic (DSC) traces of PVE-BPE with DP = 6 which exhibits only a monotropic SA 

phase. Upon complexation with 1.0 moles of NaS03CF3, this polymer exhibits an 

enantiotropic SA and an additional unidentified (S) smectic mesophase (7b). This experiment 

demonstrates the transformation of a monotropic SA phase into an enantiotropic one and of a 

virtual smectic phase (S) into a monotropic one. Figure 3b demonstrates the transformation of 
the crystalline polymer, poly[4-(2-{4-[l l-(methacryloyloxy)undecyloxy]- 

phenyl}ethynyl)benzo-15-crown-5] (PMA-PA) (6a), into a polymer which exhibits an 

enantiotropic SA phase (7a). This experiment demonstrates that complexation can transform a 

virtual mesophase into an enantiotropic one. 

The ability to manipulate and to stabilize liquid-crystalline mesophases by complexation is 

strongly dependent on the size of the crown ether, of the cation, and on the nature of the 

counteranion. 

MOLECULAR-RECOGNmON-DIRECTED SELF ASSEMBLY OF TAPERED 
GROUPS CONTAINING CROWN ETHERS INTO TUBULAR 
SUPRAMOLECULAR ARCHITECTURES 

Scheme 3 outlines the synthesis of a series of self-assembling building blocks containing 15- 

crown-5 based endo-receptors and 3,4,5-tris(p-alkoxybenzyloxy)benzoate (i.e., 12-ABG- 

B15C5,4-ABG-15C5,6-ABG-15C5 andl2-ABG-15C5) or 3,4,5- 

tris(dodecyloxy)benzoate (12-AG-15C5)-tapered side groups as exo-receptors (9). All of 

these building blocks form lamellar crystalline phases. However, upon complexation with 

alkali metal salts those with twelve carbons in their alkyl tails self-assemble into tubular 
supramolecular architectures which generate a hexagonal columnar (<&h) thermotropic 

mesophase. Figure 4a presents a representative example of a series of DSC traces for the 

complexes of 12-ABG-B15C5 with KSO3CF3. The amount of salt in the complex is 

indicated on the figure. It is sufficient to add 0.1 moles of KSO3CF3 per crown ether to 

suppress the crystallization ability of 12-ABG-B15C5 and generate a supramolecular 

disordered structure which displays a glass transition temperature (Tg). The presence of a Tg 

indicates the creation of a polymer-like cooperative motion upon complexation. Addition of 

0.2 moles of KSO3CF3 per crown ether produces a supramolecular tubular architecture. This 

amount of salt is sufficient to overcome the entropy loss required for the self assembly of 12- 

ABG-B15C5 into the tubular structure. Larger amounts of salt continue to stabilize the 
supramolecular tubular structure which is responsible for the formation of the <I>h liquid- 

crystalline phase. Figure 4b plots the isotropic-hexagonal columnar (Tj_oh) transition 

temperature as a function of the amount of salt in the complex for a series of four self- 

assembling building blocks. The values of Ti.<t>h for MS03CF3/crown ether (mol/mol) ratios 
larger than 1.0 are less reliable (9) since in some cases the resulting structures start to 

decompose. These data demonstrate that the wider 12-ABG-tapered groups produce a more 

stable tubular structure than the 12-AG groups. 
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Scheme 3: Synthesis of 12-ABG-B15C5 andn-ABG-15C5 

At the same time, for the same 12-ABG-B15C5 building block, complexation with cations 

which form 2/1 mol/mol crown/metal sandwich-like complexes (i.e., K+) produce more stable 

columns than those which form 1/1 mol/mol crown/metal complexes (i.e., Na+). The X-ray 
investigation of the Oh mesophase obtained from these supramolecular tubular architectures 

suggests the mechanism of self-assembly depicted in Figure 5. The crown ether endo- 

receptors are segregated in the center of the column with the tapered exo-receptors radiating 

towards the periphery of the column (9). The tapered shape of the exo-receptor of these 

building blocks determines the tubular shape of the supramolecular architecture. At the same 

time the endo-receptor (crown ether) is mainly responsible for the stability of the resulted 

column. The diameter of these tubular structures is determined both by the size of the tapered 

group and by the size of the crown ether. The alkyl tails of the tapered side groups are melted 

on the exterior surface of the tubular structure. The inner and outer diameters of these columns 

can be engineered via the size of the crown ether, the tapered side group, and the metal salt 

used in the complexation process. Therefore, the role of the exo-receptor is similar to that of a 

brick, while that of the endo-receptor is similar to that of the cement used in a construction. 
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The shape and size of the brick determines the shape of the construction and also its stability, 

while the primary role of the cement is to enhance its stability. Co-assembly of these building 

blocks with other similar structures is controlled both by the nature of their endo- and exo- 

receptors (10). These self-assembling building blocks demonstrate a very simple system 

which contains all of the information required for the self-assembly in its components. At the 

same time the co-assembly of these tapered units demonstrates the concept of self-checking 

(10). Finally we would like to mention that these self-assembled tubular supramolecular 

architectures exhibit ionic conductivity which is strongly dependent on the shape of the 

supramolecular architecture and therefore, can be switched on or off by a phase transition 

which changes the supramolecular structure from tubular to lamellar or to a disordered isotropic 

structure (11). Additional examples of self-assembling building blocks from our (12) and from 

other (13) laboratories were reviewed elsewhere. 
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